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Abstract 
In the present communication, exponential intuitionistic fuzzy information measures are 

introduced and characterized axiomatically. To show the effectiveness of the proposed measure, 

it is compared with the existing measures. Fuzzy discrimination and symmetric discrimination 

measures are defined and their validity is checked. Important properties of new measures are 

studied. Their applications in pattern recognition and diagnosis problem of crop disease are 

discussed. 
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Introduction 
Probability has been traditionally used in modeling uncertainty. Since instigated the idea of fuzzy 

sets, fuzziness becomes another way to model uncertainty. On the other hand, Classical 

information theory has been widely used in the literature for representing the uncertainties in the 

data in the form of classical measure theory. But these measures are valid only for a precise data 

i.e., where the data related to the system are precisely known. But due to the various constraints 

in day-to-day life, decision makers may give their judgments under the uncertain and imprecise 

in nature. Thus, there is always a degree of hesitancy between the preferences of the decision 

making and hence, the analysis conducted under such circumstances is not ideal and hence does 

not tell the exact information to the system analyst. To handle this, fuzzy set theory Zadeh [1] 

has been introduced for handling the uncertainties in the data by defining their membership 

grades between 0 and 1 corresponding to each element in the universe of discourse. Under these 

environments, Deluca and Termini [2] proposed a set of axioms for the fuzzy entropy based on 

the Shannon measure [3]. After their pioneer work, various authors Bhandari and Pal [4], Garg et 

al. [5], Pal and Pal [6], Verma and Sharma [7], introduced the entropy measure under the fuzzy 

environment.  

But with the growing complexities of the systems day-by-day, it is not possible to give a 

preference towards the alternative under the different attribute in terms of a single or exact 

number. Hence, to deal with it, intuitionistic fuzzy set (IFS) theory Attanassov [8], is one of the 

most permissible theories to handle the uncertainties and impreciseness in the data than the crisp 

or probability theory. For this, Szmidt and Kacprzyk [9] extended the axioms of Deluca and 

Termini [2] to IFS environment and defined their corresponding axioms. Later on, corresponding 

to Deluca and Termini [2] fuzzy entropy measure, Vlachos and Sergiadis [10] extended their 

measure in the IFS environment. Zhang and Jiang [11] presented a measure of intuitionistic 

fuzzy entropy based on a generalization of measure of Deluca and Termini [2]. Ye [12] proposed 

a two entropy measure by extending the work as defined by Parkash et al. [13] gives a simplified 
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form of the Ye [12] entropy. Verma and Sharma [7] proposed exponential order entropy under 

IFS environment. Thus, it has been concluded that the distance or entropy measures are of key 

importance in a number of theoretical and applied statistical inference and data processing 

problems. 

 

Preliminaries: In the following, some needed basic concepts and definitions related to fuzzy 

sets and intuitionistic fuzzy sets are introduced. 

 

Fuzzy set: 

Fuzzy set theory deal with lot of problem of science, engineering and medical for which 

Zadeh [1] introduced fuzzy set A  defined on a finite universe of discourse 

)...,,.........,( 21 nxxxX =   is given as: 

 }/)(,{ XxxxA A =   

where, ]1,0[:)( → XxA   is the membership function of A . The membership value )(xA

describes the degree of belongingness of Xx  in A . 

 

Some entropy measures defined on fuzzy set are describe as follow: 

 

 De Luca and Termini [2] defined fuzzy set entropy for a fuzzy set A given by 
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Pal and Pal [6] introduced the fuzzy exponential entropy for fuzzy set A  given by  
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Further, Anshu Ohlan defined new parametric generalized exponential measure of information  

 

             (3) 

 

Intuitionistic Fuzzy Set: 

  Atanassov [8] proposed a generalization of fuzzy set characterized as intuitionistic fuzzy 

set (IFSs). For each element Xx , there exist two characteristic functions for membership and 

non-membership ( )xandx AA  )(  respectively an intuitionstic fuzzy set XinA  is given  

 }/)(),(,{ XxxxxA AA =   
where, ]1,0[:],1,0[: →→ XX AA   with the condition ( ) ( ) 10 + iAiA xx   for all .Xx  

Obviously each fuzzy set may be represented by the following IFS  

 }/)(1),(,{ XxxxxA AA −=   

Li, Lu and Cai proposed a method for transforming Atanassov’s intuitionistic fuzzy set into 

fuzzy sets by distributions hesitations degree equally with membership and non-membership. Let  
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}/)(),(,{ XxxxxA AA =   be an Atanassov’s intuitionistic fuzzy set. Then the fuzzy 

membership function ( ) AtoxA


  ( A  be the fuzzy set) is given as: 

( ) ( )
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where ( ) )()(1 iAiAA xxx  −−=  is the hesitation degree of the element .AtoXx  

 

Entropy defined on intuitionistic fuzzy set: 

 

Zhang and Jiang [11] presented a measure of intuitionistic fuzzy entropy based on a 

generalization of measure (1) as  
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Verma and Sharma [7] presented a measure of intuitionistic fuzzy entropy based on a 

generalization of measure in (2) as  
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Parametric exponential fuzzy entropy is given by Anshu Ohlan on fuzzy set in (3) and we define 

parametric exponential fuzzy entropy for intuitionistic fuzzy set 
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Theorem: Show that measure )(AG  is entropy measure over intuitionistic fuzzy set .A   

Proof. To prove entropy measure we have to satisfy the four properties 41 KK to . 

:1K  We have to show that )(AG  is minimum iff A  is crisp set i.e 0)( =xA  and 1)( =xA  or 

1)( =xA  and .0)( =xA  
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and equation (9) will be of the form  
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Using the result of Pal and Pal [6] we have 
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Now for all Xxi   again 
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We also know that for all i 
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Solving the above equations  

0)( =iA x , .1)( =iA x or 1)( =iA x , .0)( =iA x  

Therefore, 0)( =AQ  iff either 0)( =iA x
 
and 1)( =iA x

 
or 1)( =iA x  and .0)( ixiA =
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Hence for maximum value there should be .0
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at ( ) 5.0=iA xP  i  as shown in figure 1. 

This implies ( )AQ  has maximum value at ( ) 5.0=iA xP
 

 

 

 

figure 1 

:K 3  In order prove that )(AQ  satisfy the
 3K , it is sufficient to prove that function  
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w. r. t. p and decreasing for q. 

Now, 
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In order to find the critical point of g, put 0,0 =
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Therefore, g is increasing function if qp   and g is decreasing function if qp  . 

Thus, by containment property, monotonicity of function ( )qpg ,  and we get  

)()( BQAQ   for .BA  
 

:K 4  We have  ( )XxxxxA iAiA

C = /)(),(,   for all Xxi   )()( iAiA xx C =
 

and 

)()( iAiA
xxC  = . Now clearly by description of complement of intuitionistic fuzzy set and by 

equation (4), we have, ).()( CAQAQ  =  Hence )(AQ  is a valid entropy measure for 

intuitionistic fuzzy set. 

 

 

Example: 

Let ( )nxxx .......,,, 21=  be a finite universe of discourse and ( ) ( ) = iiAiAi xxxxB /,,   

be an intuitionistic fuzzy set. We assume that intuitionistic fuzzy set on universal set   which 

follows as: 

 ( )  ( )  −−= i

n
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iAi

n xxxxB /11,,               (4) 

We consider an intuitionistic fuzzy set G on which is defined as 

B = ( ) ( ) ( ) ( ) ( ) 0.0,0.1,0.0,9.0,5.0,3.0,4.0,5.0,8.0,1.0 ,5,4,3,2,1 xxxxx  

Now with the help of operations defined in equation (4) the following intuitionstic fuzzy set are 

created: 

 4322

1

,,,, BBBBB  

which are defined as follows: 

 2

1

B  may be assumed as “More or less LARGE” 

 B   may be assumed as “LARGE” 

 
2B  may be assumed as “very LARGE” 
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3B  may be assumed as “quite very LARGE” 

 
4B  may be assumed as “very very LARGE” 

and the corresponding set of above notation are given as  
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According to the fuzzy mathematical operation the proposed entropy on different set should be in 

following order 
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Table is constructed for batter comparison between entropies on intuitionistic fuzzy set 

 

 2

1

B  

 

 

B  

 

 
2B  

 

 
3B  

 

 
4B  

 

G(B) 

 

2.9256 2.8419 1.9603 1.4487 1.1963 

 

The above table shows that required order of the entropies is followed by the defined entropy. 

Conclusion: 
Decision making process is incomplete without the use of entropy measure, so in this 

manuscript, a more generalized intuitionistic fuzzy entropy measure has been presented. Some 

important properties corresponding to these measures have been studied. The proposed operators 

show a more stable, practical and optimistic nature to the decision makers during the aggregation 

process. Further the proposed measure is helpful to solve the multi-criteria decision making 

problem. 
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